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1 Introduction

Bargaining power and its sources have long interested economists and social scientists more

generally. Examples include bargaining between buyers and sellers (Dunlop & Higgins 1942,

Taylor 1995, Loertscher & Marx 2022), cartel members (Napel & Welter 2021), employers

and labour unions (Hamermesh 1973, Svejnar 1986, Manning 1987), husband and wife (Basu

2006, Browning et al. 2013, Anderberg et al. 2016), the members of a political alliance

(Diermeier et al. 2003, Francois et al. 2015), or legislators (Snyder et al. 2005, Kalandrakis

2006, Napel & Widgrén 2006, Ali et al. 2019, Nunnari 2021). In cooperative game theory,

a vast literature deriving power indices exists with the Shapley-Shubik index (Shapley &

Shubik 1954) and the Penrose-Banzhaf index (Penrose 1946, Banzhaf 1965) being the most

famous examples. Cooperative game theory, however, does not model the process through

which players interact and thus is not able to answer questions such as how the bargaining

power of a player depends on their ability to make a counter offer, delay agreement, or

veto certain outcomes. In non-cooperative game theory, on the other hand, the structure of

the interaction between players forms an explicit part of a game, but in this context much

less effort has been invested in developing measures of power. A common approach is to

assume complete information, transferable utility, and self-interested players, in which case

bargaining reduces to the division of a fixed surplus. In such settings, which we will refer to

as surplus-division games (or SD games for short), power can be measured by the expected

share of the surplus that each participant receives. But if utility is non-transferable or at

least one player feels some degree of altruism, the utility a player achieves in equilibrium need

not be informative about this player’s bargaining power. To see this, consider the following

example: Three countries form a military alliance and need to decide how to respond to

foreign aggression. Country A is hawkish, Country B is dovish, and Country C prefers a

measured response. If the agreed policy coincides with that favoured by Country C, it is not

clear whether this outcome is due to the dominance of Country C or represents a compromise

between countries A and B. How can we quantify the bargaining power of each country?

In this paper, we provide a measure of bargaining power that can be applied to any

non-cooperative game of bargaining, including games of incomplete information, but also to

mechanisms or even social choice functions. As the above example shows, the outcome of

the game alone may not fully reveal each players’ bargaining power. The fundamental idea

underlying our approach is that we can instead calculate a player’s power based on the effect

of hypothetical changes in this player’s preferences, holding all other aspects of the game

fixed. In the case of the military alliance, for example, we can consider what would happen

to the agreement if country C was dovish or hawkish instead of moderate. If country C
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has little influence, a change in this country’s preferences would leave the outcome largely

unchanged. If country C is very powerful, on the other hand, the outcome would always

remain close to the one favoured by country C.

Despite the simplicity of this idea, any number of measures of bargaining power can be

constructed on its basis. To guide our choice between these measures, we specify four Axioms

that such a function should satisfy. These axioms reflect the basic principle outlined above:

The Axiom of Null players, for instance, states that a player should be assigned a bargaining

power of zero if changes in their utility function never have any effect on the outcome of a

game. The Axiom of Local Dictators, on the other hand, posits that some player n should

be assigned a power of one if, starting from the vector of players’ actual utility function, any

shift in the utility function of player n produces the same outcome as if all other players’

preferences were aligned with those of player n. A third axiom, Proportionality, requires

the measure of bargaining power to be based on a comparison of cause and effect. Simply

put, if in one game a small shift in a player’s utility function has a comparable effect on

the outcome of the game as a larger shift in another game, then the bargaining power of

the player should be proportionally higher in the first game. To specify the final axiom, we

introduce the concept of a compound game, which is a lottery that determines the game to

be played. The Axiom of Compound games states that the bargaining power assigned to a

player in a compound game should be a weighted average of the bargaining power in each

constituent game.

Our main result establishes that these four axioms characterise a unique function. This

function is calculated based on a limited number of equilibria and has a clear interpretation.

Specifically, the measure calculates how much the outcome of the game is affected if the

utility function of a player is replaced with that of another player, with the actual utility

function of the player serving as a metric that quantifies the size of the impact. The effect of

the shift in the player’s preferences is then expressed relative to the one that would occur if

the player was a local dictator. The final measure averages this quantity across shifts to the

utility function of each other player. Bargaining power calculated in this way thus answers

the question of how much a player is able to influence the outcome of the game compared

to a local dictator.

While our measure of bargaining power can be applied to virtually any non-cooperative

game of bargaining, it is most useful in settings where utility is non-transferable. Suppose

that the countries of the military alliance in the above example are considering the adoption

of a protocol for decision-making, aiming to balance a number of conflicting goals, such as

the speed of reaching an agreement, ensuring the stability of the alliance, and a balanced

division of bargaining power. In this context, being able to calculate the distribution of
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power implied by each protocol under consideration provides highly valuable information.

While most useful in other settings, it is instructive to apply our measure to the divide-

the-dollar setting of SD games. We establish conditions under which our measure is equal to

the expected share of the total surplus a player receives in equilibrium and thus equivalent to

the conventional approach to calculating bargaining power in this context. Whereas the two

approaches often coincide, they can also produce notably different results as illustrated by the

following example: Suppose there are two players who need to divide a cake and each player’s

utility is given by their share. With probability .9 the whole cake is given to player 1 and

the game ends. With the remaining probability, player 2 is given the opportunity to propose

a split. If player 1 accepts such an offer, the split proposed by player 2 is implemented. If

player 1 rejects, both players receive nothing. In the unique subgame perfect equilibrium of

this game, player 2 proposes to keep the whole cake and player 1 accepts. The share of the

cake (and of the available surplus) that player 1 receives in expectation is therefore equal

to .9. However, the preferences of player 1 do not matter for the outcome. For example,

the outcome of the game would not change even if player 1 preferred to give all of the cake

to player 2. Given that our measure is based on the degree to which changes in a player’s

preferences lead to changes in the outcome, it assigns player 1 a bargaining power of zero

rather than 0.9. Our measure thus captures that the high share of the surplus that player 1

receives in equilibrium derives from luck rather than power.

The bargaining power our measure assigns to a player is conditional on players’ prefer-

ences, which is in line with the well-known fact that aspects of preferences, such as impatience

or risk aversion, can matter for a player’s ability to achieve favourable outcomes. It can also

be of interest to abstract from preferences and evaluate power as determined by the rules

of the game only, for example when designing institutions before players’ preferences are

known. Such an ex ante measure of power can be constructed based on our ex post measure

by specifying a distribution that players’ preferences are drawn from and then calculating

expected ex post power under said distribution. When applied to weighted voting games,

we show that under suitable choices of the distribution of players’ preferences the ex ante

version of our measure reproduces the Shapley-Shubik index and the Penrose-Banzhaf index.

We provide three additional applications of our theory, the first of which is cartel for-

mation. If firms are unable to make transfers between cartel members due to the risk of

being caught out, firms may negotiate over individual production quantities. Knowing the

influence that each firm had on the agreement can provide a basis for apportioning com-

pensation in case of conviction, for instance. We show that under mild assumptions our

measure of bargaining power takes a particularly simple form in this setting and becomes

equal to a firm’s profit in equilibrium divided by the profit this firm would achieve if it was
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a monopolist. With asymmetric costs or demand elasticities the latter number may differ

widely between cartel members. Even a firm with a small market share may thus turn out

to wield considerable influence.

The second application we consider is intra-household decision-making. The literature

of the economics of the household has an intrinsic interest in the distribution of power

between husband and wife and its underlying determinants. While the collective model of

the household features explicit bargaining weights, in non-cooperative models power is an

implicit product of the entire environment. Our measure can be used to quantify bargaining

power in this setting and reveal the driving factors through comparative statics. We illustrate

this in the context of a model analysed by Bertrand et al. (2020) and show that even a small

gender wage gap can lead to wide differences in the bargaining power of husband and wife.

As a third example, we examine bargaining power in a legislative context. The decision-

making power conferred onto the members of an institution is a crucial aspect of procedural

rules. We calculate players’ power in two classic models of legislative bargaining, which can

be seen as variations of a common benchmark model. This example illustrates how applying

our measure to slightly modified extensive forms can reveal which aspects of the rules of the

game give a player more or less influence.

Further applications of interest abound. For instance, our measure can be applied to

Nash-in-Nash bargaining (Horn & Wolinsky 1988, Collard-Wexler et al. 2019), which has

recently been used extensively in applied work (Crawford & Yurukoglu 2012, Gowrisankaran

et al. 2015, Ho & Lee 2017, Crawford et al. 2018). Bagwell et al. (2021) estimate a structural

model of WTO negotiations in order to study how different bargaining protocols affect out-

comes. The parameters they estimate include bargaining weights for bilateral negotiations.

Our measure could be applied to the estimated model to assign each country an overall

bargaining power and to study how bargaining power is affected by changes to institutional

rules. Similarly, our measure could be used to investigate the bargaining power implied by

the different protocols for negotiations over international climate agreements analysed in

Harstad (2023).

The remainder of this paper is organised as follows: In Section 2, we place our study in

the context of the literature. Section 3 derives our measure of bargaining power and explores

its properties. Some extensions of the basic theory are introduced in Section 4. Section 5

presents applications, while Section 6 concludes.
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2 Related Literature

Our main contribution to the literature is to provide a method for calculating the bargaining

power of a player that can be applied to any non-cooperative model of bargaining. In

cooperative game theory, a vast literature exists that develops power indices for so-called

simple games with a particular interest in voting games (see, for example, Penrose 1946,

Shapley & Shubik 1954, Banzhaf 1965, Deegan & Packel 1978, Johnston 1978, Holler 1982,

Owen & Shapley 1989). Since a non-cooperative game can generally not be expressed as

an in some sense equivalent cooperative game,1 there is no general way to apply power

indices intended for cooperative games to non-cooperative games. In non-cooperative game

theory, by contrast, the only approach to measuring power that is widely applied is to

assume complete information, transferable utility and selfish players, in which case power

can be measured by the share of the total surplus a player receives (Taylor 1995, Haller &

Holden 1997, Kambe 1999, Fréchette et al. 2005, Snyder et al. 2005, Kalandrakis 2006, Ali

et al. 2019). Yet, transferable utility is a strong assumption since it requires that players

have access to a common currency with constant marginal utility (Myerson 1991, p. 384).

When utility is non-transferable or information is incomplete, it is in some cases possible to

express the equilibrium of the bargaining game as a weighted mean of each player’s most

preferred outcome, either in terms of physical outcomes or in terms of utilities. In games

with more than two players such weights are often not unique, however, as in the example

of the military alliance we provide in the introduction. Larsen & Zhang (2021) follow this

approach to derive a measure of bargaining power for two-player games. Their measure is

outcome-based in the sense that it assigns a player a high bargaining power if their utility

is close to their best-possible outcome. The same is not necessarily true for our measure, as

illustrated by the example in the introduction where player 1 is given a high share of the

surplus regardless of their choices and thus assigned a bargaining power of zero.

Steunenberg et al. (1999) develop a power measure for games where players’ utilities

are a function of the distance between the outcome and their ideal point. They assume a

distribution that players’ preferences and the status quo are drawn from and that the power

of a player is inversely proportional to the average distance between their ideal point and

the outcome across all possible draws. This procedure cannot calculate power conditional

on a specific constellation of preferences.

1Papers that connect cooperative and non-cooperative game theory typically seek to provide a non-
cooperative justification for a cooperative solution concept by finding a specific non-cooperative game that
generates the same distribution of payoffs. See, for example, Hart & Mas-Colell (1996), Krishna & Serrano
(1996) and Laruelle & Valenciano (2008).
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Napel & Widgrén (2004) introduce the idea of measuring power based on shifts in players’

preferences. They propose a measure for games with a one-dimensional outcome space and

suggests different ways in which their approach can potentially be generalised. While our

measure can be applied to a wider set of games, another key difference between our approach

and theirs is that Napel & Widgrén focus on marginal shifts in preferences, while we shift

player’s preferences to match those of other players. A drawback of marginal shifts is that

they may not reveal the full extent of a player’s influence. To see this, consider the following

example: Two players need to agree on a point on the real line. Each players’ utility is equal

to minus the distance between the chosen point and their ideal point. The ideal point of

player 1 is equal to 1, that of player 2 equal to 2, and there is a status quo given by 2.5. The

game simply consists in player 1 making a take-it-or-leave-it offer to player 2. Player 2 only

accepts if the offer is weakly above 1.5 and player 1 thus offers 1.5. A marginal shift in the

ideal point of player 1 leaves the outcome unchanged and the measure of Napel & Widgrén

thus assigns player 1 a bargaining power of zero. However, player 1 clearly has an influence

on the outcome of the game. Our measure assigns both players a bargaining power of .5.

We thus go beyond the existing literature by providing a new measure of bargaining

power, which is the first measure that can be applied to any non-cooperative game of bar-

gaining. Furthermore, we provide the first axiomatization of a measure of bargaining power

in the field of non-cooperative game theory.

3 A Measure of Bargaining Power

In this section we present our approach to measuring bargaining power. We start by formally

defining the setting in which we develop our theory.

3.1 Theoretical Framework

We start by introducing notation that is convenient for our purpose to describe what is

otherwise a standard game. Let Γ = (N , T , O,u) be an extensive form game. N denotes

the set of players with N = |N | and 2 ≤ N < ∞. T is the ”game tree”, which we use

here in a broader sense than is typically the case to refer to a full description of the order

of moves, including those by nature, and the information structure of the game. The set of

all possible outcomes of the game is given by O and contains at least two elements, that is,

|O| ≥ 2. The preferences of player n over the set O are represented by a utility function

un and u is the vector of all players’ utility functions. The set U collects all distinct utility

functions contained in u.
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From an ex ante perspective, an equilibrium of Γ generates a probability distribution

over outcomes due to possible moves of nature or mixed strategies. We assume there exists a

function µ∗ that maps vectors of utility functions u ∈ UN into probability measures over the

set of outcomes O, holding all other elements of Γ fixed. This assumption is satisfied if the

equilibrium of Γ is always unique, possibly subject to some method of equilibrium selection.

We provide an extension to games with multiple equilibria in Section 4.2.2

The indirect utility function of player n is defined as the expected utility of the player

under the equilibrium distribution µ∗(u) over outcomes, that is,

vn(un,u) =

∫
O

un(o) dµ
∗(u) .

Given that the measure µ∗ corresponds to the probability distribution over outcomes at the

beginning of the game prior to any moves of nature, the indirect utility of a player represents

their ex ante utility.

Note that the utility function of player n appears twice in the definition of the indirect

utility function: once explicitly and once as part of the vector u. Importantly, we do not

require these utility functions to coincide. The indirect utility function can thus be used

to evaluate how some player n would feel about “hypothetical” outcomes that would occur

if their utility function contained in u was different from their actual utility function. We

henceforth refer to the vector u contained in the definition of the game Γ as players’ “en-

dowed” utility functions. To avoid confusion, we follow the convention that un always refers

to endowed utility function of player n and u to the vector of endowed utility functions,

while symbols such as u′ or u′ denote arbitrary (vectors of) utility functions drawn from the

set U . Since we never consider indirect utilities where the first argument is different from

player n’s endowed utility function, we simplify notation by suppressing dependence on the

first argument and simply write vn(u).

We refer to the indirect utilities that arise if all players were to share the same preferences

as agreement payoffs. To define these formally, let 1u′ be an N -vector such that each element

is equal to the same utility function u′ ∈ U , that is, 1u′ = (u′, u′, ..., u′) ∈ UN .

Definition 1 (Agreement Payoffs). An agreement payoff of player n is an indirect utility of

the form vn(1u′) for some u′ ∈ U .

In many games, the agreement payoff vn(1un) under agreement on player n’s endowed utility

function represents the best feasible payoff from player n’s perspective. In a public goods

2We abstract from issues such as equilibrium existence or measurability, which may require additional
restrictions on utility functions in practice.
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game, for example, agreement on player n’s utility function would imply an equilibrium

where all players apart from player n contribute.

Up to this point, Γ could be any extensive form game. In order to apply our measure

of bargaining power, however, Γ needs to satisfy some conditions. First, we require players’

indirect utility functions to be finite-valued.

Assumption 1 (Finite Indirect Utilities). For any player n and any vector u′ ∈ UN , −∞ <

vn(u
′) < ∞.

Furthermore, we require some disagreement among players.

Assumption 2 (Conflict of Interest). For any player n there exists a player m such that

vn(1un) > vn(1um).

Assumption 2 states that every player strictly prefers agreement on their endowed utility

function over agreement on the endowed utility function of at least one other player. This

assumption requires not only that there are two players with distinct preferences, but also

that players collectively have at least some influence on the outcome. Assumption 2 thus rules

out any “game” where the outcome is independent of any player’s choices. On the other hand,

a game where all players have the same most-preferred alternative can satisfy Assumption

2 as long as players do not have the ability to implement the mutually preferred outcome

with certainty and some players disagree in their ranking of other outcomes. Assumption

2 could thus be summarised as requiring that there is a conflict of interest between players

regarding the outcomes that are actually achievable. Since bargaining is a way to resolve a

conflict of interest, Assumption 2 represents an essential feature of a bargaining game.

The measure of bargaining power that we derive based on a list of axioms below can be

applied to any game that satisfies Assumptions 1 and 2. However, the axioms determine

a unique function only for games that satisfy an additional assumption. This assumption

states that if the endowed utility functions of two players are not identical, then neither are

the corresponding agreement payoffs.

Assumption 3 (Regularity). If un ̸= um for n,m ∈ N , then vn(1un) ̸= vn(1um).

Denote the set of indirect utility functions of player n generated by all games satisfying

Assumptions 1 to 3 by Vn.

An important class of games in our context are SD games, which are defined as follows:

Definition 2 (SD Games). A game of surplus division satisfies

O = {o ∈ [0, 1]N |
N∑

n=1

on ≤ 1}
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and each player’s utility function is given by un(o) = on.

The outcome of an SD game is a vector that assigns each player a share of the available

surplus and each player’s utility is equal to the share they receive. A possible misconception

is that players’ endowed utility functions are identical in this setting. However, maximising

the share of the surplus of player n is not the same as maximising the share of the surplus

of some other player m.

3.2 Example and Intuition

We use the following example to illustrate the concepts:

Example 1. Consider a game with outcome space O = [0, 1] and three players. The utility

function of player n ∈ {1, 2, 3} is given by un(o) = −|o − in|, where in is the ideal point of

player n. Let i1 = 0, i2 = 1/2, and i3 = 1. Since players’ endowed utility functions only

differ in ideal points, it is possible to write the indirect utilities as vn(i1, i2, i3).

The game starts with a move of nature that determines which, if any, of the players can

subsequently choose the outcome of the game. Player n is chosen with probability λn. With

probability λ4, however, nature determines that o = 0.

In Example 1, the influence of each player is increasing in the probability that this player

is selected to choose the outcome. The approach we follow here in order to quantify the

power of a player is to introduce changes in a player’s preferences and observe to what

extent doing so changes the outcome of the game. In Example 1, the expected outcome of

the game is equal to λ2/2 + λ3 since each player implements their own ideal point if given

the opportunity. If we assign player 1 the ideal point of player 3 instead, the expected

outcome would equal λ1 + λ2/2 + λ3. The question then arises how to quantify differences

in the outcomes of games and an approach that is always possible is to compare outcomes

in terms of the utilities they imply for a player. The indirect utility as we define it here is

designed for this purpose. Given that player 1 in Example 1 is risk neutral, their utility in

the actual equilibrium of the game is v1(i1, i2, i3) = −|λ2/2+λ3−i1|, which is simply equal to

−(λ2/2+λ3). In the counterfactual game where player 1 is assigned the ideal point of player

3, we already calculated the expected outcome to be equal to λ1 + λ2/2 + λ3. The indirect

utility function of player 1 evaluates this hypothetical outcome under player 1’s endowed

utility function, that is,

v1(i3, i2, i3) = −|λ1 + λ2/2 + λ3 − i1| = −(λ1 + λ2/2 + λ3) .
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The difference v1(i1, i2, i3) − v1(i3, i2, i3) is therefore equal to λ1, which illustrates that the

indirect utility function of a player provides information about this player’s bargaining power.

In general, we may want to normalize this quantity in some way since a simple difference

in utilities depends on the scale of players’ utility functions. In addition, there is also the

question which shifts in players’ preferences should be taken into account. We therefore

pursue an axiomatic approach in the following section.

We can also use Example 1 to illustrate the concept of an agreement payoff. If all players

shared the ideal point of player 3, for instance, the outcome of the game would be equal to 1

unless nature determines the outcome to be equal to 0 with probability λ4. The agreement

payoff v3(i3, i3, i3) of player 3 is therefore given by −|(λ1 + λ2 + λ3) − 1| = −λ4. The best

feasible payoff from player 3’s perspective given the rules of the game thus only coincides

with their highest possible payoff of zero if λ4 = 0. The example shows that the difference

between the two payoffs indicates the degree of control that players collectively have over

the outcome of the game.

Any of the games given in Example 1 satisfy Finite Indirect Utilities, while Conflict of

Interest and Regularity hold if and only if λ4 < 1: as long as at least one player has some

control over the outcome, players strictly prefer agreement on their own over agreement on

any other ideal point.

3.3 Axioms

Our aim is to derive a function ρn : Vn → R that uses the information contained in the

indirect utility function of a player to assign this player a number that indicates their bar-

gaining power.3 Below we introduce axioms that this function should satisfy, which require

the following definitions. Throughout, we refer to Example 1 for illustrative purposes.

First, a player n is a local dictator if—given the endowed utility functions of the remaining

players—the outcome of the game always equals the one that would arise if all other players

shared the utility function of player n, no matter what this function actually is. Let (u′′,u′
−n)

represent the vector of utility functions created by taking some vector u′ and replacing the

utility function of player n with some function u′′ ∈ U .

Definition 3 (Local Dictator). Player n in some game Γ is said to be a local dictator if

µ∗(u′,u−n) = µ∗(1u′) for any u′ ∈ U .
3Note that it would in principle be possible to let the bargaining power of a player depend on all players’

indirect utility functions rather than just their own. Doing so would have the potential advantage that the
sum of bargaining powers can be normalized to equal one, for example. However, as we argue in Section
3.5, such a normalisation would not be compatible with our axioms in any case. Without a clear reason to
include other players’ payoffs, we instead opt for a simpler measure.
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We refer to a player satisfying Definition 3 as a local dictator rather than simply as a dictator

since the property pertains only to a specific vector of other players’ preferences rather than

to any such vector. In Example 1, a player n satisfies the definition of a local dictator if

and only if λn = 1 − λ4. The definition therefore does not imply that a local dictator has

the ability to implement their most preferred outcome with certainty. Instead, the defining

property of a local dictator is that their influence over the outcome is equal to the collective

influence of all players.

A null player, on the other hand, is a player who never affects the outcome.

Definition 4 (Null Player). Player n in some game Γ is said to be a null player if µ∗(u′) =

µ∗(u′′,u′
−n) for any u′ ∈ UN and u′′ ∈ U .

Assumption 2 rules out that a player could simultaneously be a local dictator and a null

player.4 In Example 1, player n is a null player if and only if λn = 0, which implies that

player n is both null and a local dictator if and only if λ4 = 1. As explained above, however,

the latter case violates the Assumption of Conflict of Interest.

Finally, a compound game is a game that starts with a random draw that determines

which of a number of other games is played. Importantly, all players are aware of which game

is selected and—given that equilibrium is assumed to be unique—the behaviour of players

is thus identical to the case where each game is played in isolation. The constituent games

of a compound game need to be compatible in the sense that they share the same sets of

outcomes, players, and utility functions.

Definition 5 (Compound Game). Γ is said to be a compound game if

i. there exists a finite set of games Γ = {Γ1,Γ2, ...,ΓG} that differ only in terms of their

respective game trees, and

ii. Γ begins with a commonly-observed move of nature selecting one game from Γ to be

played subsequently, and each game Γg ∈ Γ is chosen with probability λg.

We write Γ =
∑G

g=1 λgΓg .

Any of the games in Example 1 can be seen as a compound game.

We now state and discuss the axioms that we impose on the measure of bargaining power

ρn.

4A player can be both a local dictator and a null player only if µ∗(1u′) = µ∗(1u′′) for any u′, u′′ ∈ U .
To see this, suppose there exist u′, u′′ ∈ U such that µ∗(1u′) ̸= µ∗(1u′′). Then n being a local dictator
implies µ∗(u′,u−n) = µ∗(1u′) ̸= µ∗(1u′′) = µ∗(u′′,u−n). It follows that n is not null, which would require
µ∗(u′,u−n) = µ∗(u′′,u−n). Assumption 2 is thus sufficient to ensure that a player cannot be a local dictator
and a null player at once since it implies that not all agreement outcomes are equal.
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Axiom A1 (Null Players). If player n is a null player in a game Γ with their associated

indirect utility function given by vn, then ρn(vn) = 0.

Axiom A2 (Local Dictators). If player n is a local dictator in a game Γ with their associated

indirect utility function given by vn, then ρn(vn) = 1.

Axioms A1 and A2 impose that a local dictator is assigned a higher bargaining power than

a null player and further normalise the power of such players to one and zero, respectively.

Axiom A3 (Compound Games). Let Γ =
∑G

g=1 λgΓg and denote by vn, v1,n, ...,vG,n the

corresponding indirect utility functions of some player n. If all constituent games Γ1 to ΓG

share the same agreement payoffs, then for any player n

ρn(vn) =
G∑

g=1

λgρn(vg,n) .

The Axiom of Compound Games states that the bargaining power of a player in a com-

pound game Γ should be equal to a weighted average of the bargaining power of this player

in each of the constituent games of Γ. This property is desirable since equilibrium uniqueness

and the assumption that players are aware of which game is selected ensure that behaviour

in each constituent game is the same as if this game were played on its own. The outcome of

the game as a whole is thus a weighted average of the outcomes in each constituent game, as

are the indirect utility functions. Furthermore, the assumption of equal agreement payoffs

included in the axiom implies that players collectively have the same degree of control over

the outcome of each game. The meaning of being a local dictator is thus the same across

games. In Example 1, consider the case that λ4 = 0, which implies that the players have full

control over the outcome of the game. Then the probability that player n is able to choose

the outcome, λn, is an obvious measure of this player’s bargaining power. The example

indicates that it is natural to think of the bargaining power of a player in a compound game

as their expected power across constituent games as required by the axiom.

Axiom A4 (Proportionality). Let vn be an indirect utility corresponding to a game where

player n is a null player. Denote by v′n and v′′n indirect utilities corresponding to two alter-

native games, where v′n and v′′n are identical to vn except that v′n(u
′,u−n) = vn(u

′,u−n) − c

and v′′n(u
′′,u−n) = vn(u

′′,u−n)− c for some c ̸= 0 and u′, u′′ ∈ U \ un. Then

ρn(v
′
n)

ρn(v′′n)
=

v′′n(1un)− v′′n(1u′′)

v′n(1un)− v′n(1u′)
.
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The central idea underlying our approach to measuring bargaining power is that changes

in the preferences of a player reveal information about this player’s power through the effect

that such a change has on the outcome of the game. Axiom A4 formalizes the intuition

that if in one game a small shift in a player’s utility function has a comparable effect on

the outcome of the game as a larger shift in another game, then the bargaining power of

the player should be proportionally higher in the first game. The starting point of Axiom

A4 is a game where player n is a null player and replacing the endowed utility function of

this player with any other utility function accordingly has no effect. In each of the games

corresponding to the indirect utilities v′n and v′′n, on the other hand, exactly one such shift

has an impact on the outcome: replacing un with the utility function u′ in the game leading

to the indirect utility v′n and replacing un with the utility function u′′ in the case of the

indirect utility v′′n. Furthermore, measured in utils of player n, the size of the impact is the

same in both games. However, the size of the underlying shift in the preferences of player

n may differ across games. Specifically, u′ may represent a bigger change in the preferences

of player n relative to un than u′′ does, or vice versa. This raises the question of how to

quantify the size of such a shift. Note that for a player with a given degree of power, a larger

change in preferences produces a stronger impact on the outcome. To fix the power of a

player, we can consider the scenario where the player is a local dictator and calculate how

much a change in preferences would affect the outcome of the game in this case. If player

n was a local dictator, replacing their endowed utility function with some utility function u′

would shift the outcome from µ∗(1un) to µ∗(1u′). Expressed in utils of player n, the size of

the shift in preferences can thus be measured as vn(1un)− vn(1u′). Accordingly, the ratio

v′′n(1un)− v′′n(1u′′)

v′n(1un)− v′n(1u′)

compares the size of the preference shifts from un to u′ and from un to u′′. Axiom A4

imposes that the bargaining power of player n is proportionally higher in the game where

the underlying shift in preferences is smaller.

3.4 The Main Result

For the purpose of stating the main result, denote by U̸=n the set of utility functions such

that agreement on any of these functions generates a different level of utility for player n

than agreement on their own endowed utility function would, that is,

U ̸=n = {u′ ∈ U | vn(1u′) ̸= vn(1un)} .
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In the context of games satisfying Assumption 3 it holds that U ̸=n = U \ un.

We can now state our main result:

Theorem 1. A function ρn : Vn → R satisfies Axioms A1, A2, A3, and A4 if and only if

ρn(vn) =
1

|U ̸=n|
∑

u′∈ U ̸=n

vn(u)− vn(u
′,u−n)

vn(1un)− vn(1u′)
. (1)

Proof. See Appendix A. □

The measure of bargaining power introduced by Theorem 1 has a straightforward inter-

pretation. Each of the terms of the sum calculates the effect that a change in the preferences

of player n has on the outcome, with the endowed utility function of player n serving as a

metric. The effect is then expressed as a share of the one that would occur if player n was

a local dictator, which is given by vn(1un) − vn(1u′). Final bargaining power is calculated

as a simple average of these individual terms across the relevant range of preferences, where

the latter consists of the endowed utility functions of other players that differ from that of

player n in the sense that they generate different agreement payoffs. The question answered

by the function ρn is therefore simply how much influence player n has on the outcome of

the game relative to that of a local dictator.

As pointed out above, it holds for games satisfying Assumption 3 that U ̸=n = U \un. The

sum in Equation (1) could then be expressed equivalently over elements of the latter set.

However, summing over elements of the set U ̸=n ensures that the value of ρn is well-defined

also in the context of games violating Assumption 3.

In Appendix A we present the proof of Theorem 1 as a series of lemmas that clearly show

the additional restrictions that each axiom imposes on the shape of the function ρn. First,

the Axiom of Compound Games has the consequence that ρn must be an affine function on

a class of games sharing the same outcome sets, sets of players, and agreement payoffs. To

see this, note that the indirect utilities of a player in a compound game Γ =
∑G

g=1 λgΓg are

a weighted average of the indirect utilities of each constituent game: vn =
∑G

g=1 λgvg,n. If

all constituent games share the same agreement payoffs, the Axiom of Compound Games

requires

ρn

(
G∑

g=1

λgvg,n

)
=

G∑
g=1

λgρn(vg,n) .

Given that ρn is a functions of a finite number of utilities, which are real numbers, affinity
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implies the functional form

ρn(vn) = β +
∑

u′∈ UN

α(u′) vn(u
′) ,

where β and each α(u′) are real numbers. The value of these coefficients must be constant

across games with equal agreement payoffs, but may differ between such classes of games.

In other words, the coefficients may be functions of agreement payoffs.

The Axiom of Null Players imposes ρn(vn) = 0 if player n is a null player. The definition

of a null player implies that any indirect utilities vn(u
′) and vn(u

′′,u′
−n), which differ only

in the included utility function of player n, take the same value. However, the definition

does not pin down the level of these payoffs. For ρn to take the value zero in any game in

which player n is a null player, it is thus necessary that ρn can be expressed as a function

of differences of indirect utilities vn(u
′) − vn(u

′′,u′
−n). Since any such difference is equal to

zero when n is null, the constant β must also be equal to zero.

Note that (u′,u−n) is a vector of utility functions that differs from the vector of endowed

utility functions only in the utility function of player n. The definition of a local dictator

restricts any utility vn(u
′,u−n) to equal vn(1u′). n being a local dictator does not, however,

restrict the values of other indirect utilities where the utility functions of players other than n

differ from their endowed utility functions. To ensure that ρn(vn) = 1 if n is a local dictator

as required by the Axiom of Local Dictators, ρn thus cannot depend on indirect utilities

other than those of the form vn(u
′,u−n).

5

The above arguments establish that ρn takes the shape

ρn(vn) =
∑

(u′,u′′)∈ U2

α(u′, u′′) [vn(u
′,u−n)− vn(u

′′,u−n)] . (2)

It is then possible to factor out an arbitrary non-zero number C in the form

ρn(vn) = C
∑

(u′,u′′)∈ U2

α(u′, u′′)

C
[vn(u

′,u−n)− vn(u
′′,u−n)] .

Since the values of coefficients are at this point undetermined, we can redefine their values

to include the division by C. In order to satisfy the Axiom of Local Dictators, the constant

C multiplying the sum must be equal to one divided by the value that the remaining part

5As was pointed out above, the coefficients used to calculate ρn may depend on the values of agreement
payoffs. The final expression for ρn given in Theorem 1 therefore contains agreement payoffs in additions to
indirect utilities of the form vn(u

′,u−n).
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of the expression takes in case player n is a local dictator, that is,

ρn(vn) =

∑
(u′,u′′)∈ U2 α(u′, u′′) [vn(u

′,u−n)− vn(u
′′,u−n)]∑

(u′,u′′)∈ U2 α(u′, u′′) [vn(1u′)− vn(1u′′)]
.

If the set of utility functions U contains only two elements, the preceding expression

simplifies to the form given by Theorem 1. The role of the Axiom of Proportionality is thus

to pin down the values of the α-coefficients in the case of more than two endowed utility

functions. The remainder of the proof relies on the functional form for ρn given by Equation

(2). Denote by v′n and v′′n indirect utilities as defined in the statement of the Axiom of

Proportionality. By the construction of the indirect utility v′n, any of the utility differences

in Equation (2) involving the payoff v′n(u
′,u−n) are equal to c or −c while any other utility

differences are equal to zero. It follows that

ρn(v
′
n) = c

∑
u′′′∈ U\u′

[α(u′′′, u′)− α(u′, u′′′)] .

Denoting the sum in the preceding expression as α̃(u′), the Axiom of Proportionality there-

fore implies
ρn(v

′
n)

ρn(v′′n)
=

α̃(u′)

α̃(u′′)
=

v′′n(1un)− v′′n(1u′′)

v′n(1un)− v′n(1u′)
.

The fact that such an equality must hold for any pair of utility functions u′, u′′ ∈ U \ un

is sufficient to determine the value of each coefficient α̃ up to multiplication by a common

constant δ. More specifically, it must hold that

α̃(u′) = δ/[v′n(1un)− v′n(1u′)] (3)

for any u′ ∈ U \ un. Note that Equation (2) can be rearranged as follows:

ρn(vn) = −
∑
u′∈ U

 ∑
u′′′∈ U\u′

α(u′′′, u′)− α(u′, u′′′)

 vn(u
′,u−n)

= −
∑
u′∈ U

α̃(u′) vn(u
′,u−n) .

After using Equation (3) to substitute for every α̃(u′) such that u′ ∈ U\un, there then remain

two unknowns: the constant δ and the coefficient α̃(un). The Axiom of Null Players and

the Axiom of Local Dictators provide two equations that can be solved for these unknowns,
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yielding

ρn(vn) =
1

|U \ un|
∑

u′∈ U\un

vn(u)− vn(u
′,u−n)

vn(1un)− vn(1u′)
.

Recalling that under Assumption 3 it holds that U \ un = U ̸=n completes the proof.

3.5 Additional Properties

In this section, we discuss properties of the function ρn introduced by Theorem 1 that are

not directly stated in the axioms. For example, the Axiom of Compound Games implies that

ρn is a continuous function when restricted to a class of games that share equal agreement

payoffs. In fact, ρn turns out to be a continuous function in general, which follows since

Assumption 2 guarantees that the denominator in Equation (1) is not equal to zero for any

vn ∈ Vn. This is an attractive property since it implies that players are assigned a similar

bargaining power in games that generate similar indirect utility functions. Furthermore, the

function ρn is invariant under affine transformations of players’ utility functions, which is

reassuring since such transformations do not affect behaviour.

It is also instructive to compare the properties of our measure of bargaining power to

those of the Shapley value. The Shapley value is a solution concept for cooperative games

and thus assigns each player a payoff, while our measure is intended for non-cooperative

games. Nevertheless, both are functions that take a description of a game and assign a real

number to each player and two of the four axioms that define the Shapley value are in fact

related to axioms imposed by us. In particular, both approaches rely on an Axiom of Null

Players and the definition of a null player is similar in both contexts. In addition, our Axiom

of Compound Games is a weaker version of the Axiom of Linearity imposed on the Shapley

value. As a consequence, ρn is not a linear function and only affine on subsets of games

sharing the same agreement payoffs. Shapley’s Axiom of Anonymity is not required for our

result, even though the function ρn is also invariant to the re-labelling of players. On the

contrary, the Axioms of Local Dictators and Proportionality are unique to our setting. The

clearest point of departure, however, is that the Axiom of Efficiency requires the payoffs

assigned to players by the Shapley value to add up to one. Such a normalisation is not

compatible with our axioms. The reason is that in the equilibrium of some games all players

may be indistinguishable from null players in the sense that no individual player could change

the outcome even if they tried. All players are then assigned a bargaining power of zero. A

situation of this type can arise, for example, in an equilibrium of a voting game where no

player’s ballot can swing the outcome. An advantage of not normalizing the sum of power

coefficients is that this sum reveals information about the nature of the game, namely the
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degree to which players mutually block each other from affecting the outcome.

A final characteristic we want to highlight is the relationship between our measure and

the share of the surplus that a player receives in an SD game, which is commonly used to

assess a player’s bargaining power in that setting. As the following result demonstrates, the

two approaches coincide under certain conditions.

Proposition 1. In an SD game, ρn(vn) = vn(u) if the outcomes µ∗(u′,u−n), µ
∗(1un), and

µ∗(1u′) are Pareto efficient for any u′ ∈ U̸=n.

Proof. See Appendix B. □

The proof of Proposition 1 proceeds by using the definition of an SD-game and the

assumption of Pareto efficiency to determine the values of the indirect utilities entering

ρn. First, Pareto efficiency implies that one player receives the whole surplus if all players

agree that this would be the ideal outcome. Accordingly, vn(1un) = 1 and vn(1u′) = 0 for

any u′ ̸= un. In addition, under the vector of utility functions (u′,u−n) all players prefer

to redistribute surplus from player n to some other player, and Pareto efficiency therefore

implies vn(u
′,u−n) = 0. Substituting accordingly in Equation (1) yields the desired result.

Intuitively, efficiency of the agreement payoffs implies that the players collectively have

full control over the allocation of the surplus and so would a local dictator. A player’s

bargaining power thus depends on what share of the total surplus they have under their

individual control. Efficiency of the outcomes µ∗(u′,u−n) further implies that any part of

the surplus that player n receives in equilibrium is actually due to their influence, rather than

simply assigned to them due to some feature of the rules of the game (recall the example

in the introduction). The player’s surplus share then fully reflects their bargaining power.

Inefficiency of any of the outcomes listed in Proposition 1 implies that ρn(vn) = vn(u) does

not hold in general, even though the equality can arise coincidentally.

3.6 Examples

Before presenting more substantive applications of our measure of bargaining power in Sec-

tion 5, we provide a detailed illustration of its use in the context of the ultimatum game and

the choice of an optimal auction.

Example 2 (Ultimatum Game). Consider a game of surplus division with two players, p

and r, and with an outcome space and utility functions as given in Definition 2. Player

p, the proposer, offers a split of a dollar (op, or) and player r, the respondent, may accept

or reject. If the respondent accepts, the offer of player p is implement, while both of them

receive zero otherwise.
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In the unique subgame perfect equilibrium of the ultimatum game the proposer offers the

split (1, 0) and the respondent accepts. Since this is an SD game, Proposition 1 therefore

tells us that the bargaining power of the proposer is equal to one and that of the respondent

equal to zero. We nevertheless derive the bargaining power of player p as a simple illustration

of how to calculate bargaining power in practice. Beyond the equilibrium payoff of player

p, we also need to determine the value of their agreement payoffs for the cases that the

proponent is assigned the endowed utility function of the respondent and vice versa. In the

former case, the proposer wants to maximise the share of the dollar that player r receives

and thus proposes the split (0, 1), which is accepted. The indirect utility function of player p

evaluates this hypothetical outcome using player p’s endowed utility function. We therefore

have vp(ur, ur) = 0. If the respondent is assigned the endowed utility function of the proposer,

on the other hand, the proposer continues to offer (1, 0) and thus vp(up, up) = 1. The game

accordingly satisfies Assumptions 1 to 3 and it holds that U ̸=p = {ur}. It follows that

ρp(vp) =
vp(up, ur)− vp(ur, ur)

vp(up, up)− vp(ur, ur)

=
1− 0

1− 0

= 1 .

Example 3 (Selling an Object to Multiple Buyers). Consider a game with a seller who

wants to sell an object to one of N − 1 buyers. The value of the object to the seller is equal

to zero, while yn denotes the value of buyer n, which is private information. Buyers’ values

are drawn independently from a uniform distribution on the interval [0, 1] at the beginning of

the game. Once nature has drawn values, the seller selects a mechanism in which the buyers

subsequently participate. Let the identity of the player who receives the object be given by

B ∈ {1, ..., N} where B = 1 indicates that the seller keeps the object. P ∈ RN−1
+ is a vector

of monetary transfers from the buyers to the seller. Accordingly O = {1, ..., N}×RN−1
+ . The

endowed utility function of the seller is u1(B,P ) =
∑N

n=2 Pn while that of some buyer n is

given by un(B,P ) = 1B=n ·yn−Pn. The strategy set of the seller is restricted to mechanisms

that are individually rational and budget-balanced so that the payoffs of all players are non-

negative ex ante.

As is well known, in the equilibrium of the above game the seller chooses a second-

price auction with a reserve price and all buyers bid their value. In order to calculate the

bargaining power of the seller, we also need to determine the payoff of the seller when the

seller is assigned the utility function of a specific buyer as well as the seller’s agreement
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payoffs. First, consider the counterfactual game where the seller wants to maximise the

utility of some buyer n. Note that the game tree and the information structure remain

the same as in the original game. Players thus maintain their private information and the

seller has access to the same mechanisms. The best the seller can do for a buyer is thus

to choose a mechanism that assigns them the good for free. Under the seller’s endowed

utility function this implies a payoff of zero, that is, v1(un,u−1) = 0. The same is true if all

players are assigned the utility function of some buyer n and we have v1(1un) = 0 for any

n ̸= 1. It remains to determine the agreement payoff v1(1u1). Under an individually-rational

mechanism, the best outcome the seller could hope for even under complete information is

to assign the object to the buyer with the highest value and receive a payment equal to this

value. If buyers want to maximise the utility of the seller, the seller can actually achieve

this outcome by running a first-price auction.6 Given that we have defined the indirect

utilities as ex ante expected payoffs, we have v1(1u1) = E[y(1)], where y(1) is the highest

value. Accordingly,

ρ1(v1) =
1

|U ̸=1|
∑

u′∈ U ̸=1

v1(u)− v1(u
′,u−1)

v1(1u1)− v1(1u′)

=
1

N − 1

∑
u′∈ U\u1

v1(u)− 0

E[y(1)]− 0

=
v1(u)

E[y(1)]
.

The bargaining power of the seller is calculated by comparing their equilibrium payoff to the

best-possible outcome under complete information.7 The seller is thus assigned a bargaining

power below one due to the information rent that buyers receive in equilibrium. The measure

of Larsen & Zhang (2021), in comparison, would assign the seller a bargaining power of one,

since these authors use the best-possible payoff of the seller given incomplete information as

the relevant benchmark.

A general point that we can illustrate in this context is that, according to our measure,

positive bargaining power requires that a player makes a choice. Restraining the seller’s

strategy set to only choosing a reserve price but not the auction format itself would lead to

a lower bargaining power for the seller. If the reserve price was also exogenously given, the

6In a game where a buyer is assigned the utility function of the seller, this buyer would in principle be
willing to transfer their entire wealth to the seller. Each buyer must therefore be given a budget constraint
that determines the maximum payment they could make to the seller. The logical assumption is that this
maximum payment is equal to the buyer’s value.

7Analogous calculations show that the bargaining power of each buyer is equal to their equilibrium payoff
divided by their expected valuation, which is their expected payoff if they are given the good for free.
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seller would be assigned a power of zero.

4 Extensions

4.1 Ex Ante Power and Relation to Voting Power Indices

Our measure of bargaining power calculates power based on the endowed utility functions

and power may depend on preferences. In some sense this is natural: for example, it is

generally held that more impatient negotiators are at a disadvantage. In some cases, and

in particular for the purpose of institutional design, it can nevertheless be of interest what

degree of influence the rules of the game assign to each player independently of preferences.

Napel & Widgrén (2004) distinguish in this context between an ex ante and an ex post

perspective, that is, assessments of power before or after players’ preferences have been

revealed. Following their approach, we can use our ex post measure to calculate power

from an ex ante perspective. Doing so requires specifying a distribution F that players’

preferences are drawn from and ex ante power is simply equal to expected ex post power under

F . Depending on the chosen distribution, it may be possible to calculate this expectation

exactly, such as when F has finite support. Otherwise, expected power can be calculated

numerically by drawing preferences, calculating ex post power, and repeating this process

until the mean across draws converges. Denote by ρ̄n(F ) the ex ante bargaining power of

player n under the distribution F calculated based on the ex post measure ρn.

In practice, care needs to be taken with respect to preference profiles that violate As-

sumption 2, since the value of ρn is not defined in such cases. One option is to specify F

such that such cases do not occur. Alternatively, it may be possible to resolve the problem

by assigning a default value when ρn is not defined. For example, if players’ utility functions

are identical, it may be reasonable to assign each player a power of zero or of 1/N . In other

games, such as the example that follows, a natural extension of ρn exists.

We now use the ex post and ex ante measures ρn and ρ̄n to investigate the relationship

between our theory and the literature on voting power indices, which calculate the power of

players in weighted voting games. In such games, a committee decides whether to accept or

reject a proposal. The outcome space is equal to {0, 1}, where 1 corresponds to acceptance

of the proposal, while 0 indicates rejection. It is typically assumed that players have strict

preferences over the two outcomes and it is then without loss of generality to let all players’

utility functions be given either by u0 or by u1, where ui(o) = 1 if o = i and ui(o) = 0

otherwise. Beyond the set of players, a weighted voting game is characterised by a voting

rule, which consists of a quota q > 0 and a vector of weights w ∈ RN
+ , one for each member
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of the committee. Players simply vote in favour of or against the proposal and the proposal

is accepted if and only if the sum of all players’ weights who vote in favour is at least equal

to q. All players voting in favour is sufficient for acceptance, that is,
∑N

n=1wn ≥ q. Assume

players vote sincerely. Denote by S ⊆ N the set of players who prefer acceptance under the

endowed utility functions u. In the language of cooperative game theory, the players in S

form a coalition and the value V of the game indicates whether a coalition wins: V (S) = 1

if
∑

n∈S wn ≥ q and V (S) = 0 otherwise.

Under any given constellation of preferences u and the corresponding profile of votes,

player n is said to be pivotal if them changing their vote would change the outcome of the

game. Since such a player satisfies the definition of a local dictator, the measure ρn assigns

them a power of 1. If a player is not pivotal, their preferences do not matter for the outcome

and ρn = 0. Note, however, that agreement among the players implies that Assumption 2

is violated and the value of ρn is not defined. It seems natural to introduce the convention

that in such unanimous games (that is, S = ∅ or S = N ), ρn = 1 if player n is pivotal and

ρn = 0 otherwise. We then have the following result:

Proposition 2. Let vSn denote the indirect utility of player n corresponding to a weighted

voting game where the set of players S prefers acceptance. Assume ρn(v
S=∅
n ) = 1 if wn ≥ q

and ρn(v
S=∅
n ) = 0 otherwise. Also assume ρn(v

S=N
n ) = 1 if

∑
m∈S\nwm < q and ρn(v

S=N
n ) =

0 otherwise. Then there exist distributions FPB and FSS such that ρ̄n(FPB) is equal to the

Penrose-Banzhaf index and ρ̄n(FSS) is equal to the Shapley-Shubik index.

Proof. See Appendix B. □

Under suitable choices of the distribution of preferences F , ρ̄n(F ) is thus equal to the

Shapley-Shubik index or the Penrose-Banzhaf index. These indices are based on cooperative

game theory, and showing that they are equivalent to ρ̄n(F ) is possible since a weighted

voting game is a rare case of a game that can naturally be expressed in a cooperative or

a non-cooperative form. In general, however, voting power indices cannot be applied to

non-cooperative games, for which our measure is intended.

4.2 Games with Multiple Equilibria

Above we considered games with a unique equilibrium under any of the possible constellations

of players’ utility functions, or at least games where equilibrium uniqueness applies under

some suitable refinement. It is clear that multiplicity of equilibria can make meaningful

statements about bargaining power impossible. For example, in the Baron Ferejohn model

(Baron & Ferejohn 1989) any distribution of the surplus can be supported by some subgame
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perfect equilibrium if there are sufficiently many legislators and these are sufficiently patient.

The approach that we propose here solves the challenges posed by equilibrium multiplicity

partially.

Instead of assuming that we can assign a probability of one to a particular equilibrium as

we did above, we can choose a more general approach and specify a probability distribution

over possible equilibria. If the set of equilibria is finite, for example, we may assume that

every equilibrium is equally likely. Let Σ(u′) denote the set of probability measures that

correspond to the equilibria that exist under some vector of utility functions u′. Assuming

that we can specify a probability measure σu′ on each Σ(u′), we can define the indirect utility

of player n as

vn(u
′) =

∫
Σ(u′)

∫
O

un(o) dµ
∗ dσu′ .

The measure of bargaining power of Theorem 1 can then be computed based on this indirect

utility function without any further adjustments. What is more, the definitions and axioms

presented above can be adapted to this more general setting with only minor changes and

the proof of Theorem 1 applies verbatim. For example, the definition of a Null Player in

a game with multiple equilibria would require that changes in this player’s utility function

have no effect on the set of equilibria.

Given that it may not be obvious how to assign a probability to each equilibrium, an

alternative that can be feasible is to calculate the range of bargaining powers implied by all

possible probability distributions over equilibria. Due to the affinity of the measure ρn, the

bargaining power assigned to a player under any given distribution over equilibria is equal to a

weighted average over the bargaining powers assigned under each individual equilibrium. To

determine the range of bargaining powers implied by all possible distributions over equilibria

it is therefore sufficient to calculate the highest and the lowest bargaining power implied by

the individual equilibria.

5 Applications

5.1 Cartel Formation

The formation of a cartel arguably constitutes a setting of non-transferable utility since

monetary transfers could be used as evidence of collusion in court. Since the production

levels that maximise joint profits may imply wide disparities between the profits of individual

cartel members, quantities may be subject to negotiation. Suppose, for example, that N

firms produce a homogeneous good, where each firm has a constant marginal cost cn that
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differs between firms. In this case the sum of profits would be maximised if only the firm

with the lowest cost produces, but in the absence of a means to redistribute these profits the

remaining firms clearly have no incentive to agree to such terms. If the firms are later found

by the authorities to have engaged in collusive behaviour, the relative influence of each firm in

bringing about the agreement could be used for the purpose of apportioning compensation.8

In order to determine this relative influence, it may not be sufficient to know the market

share or cost structure of each firm, for instance because a relatively small or inefficient firm

could be pulling above its weight due to political clout or connections to organised crime.

Non-cooperative cartel formation is a subject of ongoing research (Abe 2021, Korsten &

Samuel 2023) and providing a fully-specified model is beyond the scope of this paper. Yet,

our measure of bargaining power takes a particularly simple form in this setting under weak

assumptions about the underlying process. These assumptions are i) that a firm’s profit is

fully reflective of its payoff in the game, which is reasonable if other forms of compensation

are not possible, and ii) that if a firm’s utility function is replaced with that of another

firm, it ceases production, implying an indirect utility of zero.9 Under these conditions our

measure of bargaining power becomes equal to a firm’s equilibrium profit divided by this

firm’s individual monopoly profit. Simply relying on market shares or shares of total profits

may thus not accurately reflect a firm’s role in the formation of the cartel. The reason is

that total production or total profits do not provide a relevant benchmark at the individual

level. The highest-possible profit an inefficient firm could hope for may be substantially

lower than that of a competitor with lower costs. To illustrate, consider a case with three

firms and unit costs that are given by c1 = 0.1, c2 = 0.2, and c3 = 0.3 and an inverse market

demand equal to P = 1−Q where Q is total production. Then individual monopoly profits

are given by 0.20, 0.16 and 0.12 in ascending order of costs. The best possible payoff thus

differs substantially across firms and dividing individual by total equilibrium profits would

overstate the bargaining power of efficient firms and understate that of inefficient firms.

5.2 Household Bargaining

The literature on intra-household decision making has an inherent interest in the determi-

nants of the balance of power between spouses. One approach, namely the collective model

of the household (Chiappori 1988, 1992), assumes efficient outcomes while the distribution

8Napel & Welter (2021, 2022) respectively propose using the Shapley-Shubik index and the Shapley value
to assign relative responsibility for damages to the members of a cartel. The drawback of these approaches
is that one has to assume that a cartel among any subgroup of firms is associated with a unique vector of
production quantities, precluding bargaining among cartel members.

9If products are substitutes, not producing is the best a firm can do to maximise another firm’s profit.
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of resources is determined by explicit parameters for male and female bargaining power. The

main competitor is the non-cooperative model of the household (Lundberg & Pollak 1994,

Konrad & Lommerud 1995, Browning et al. 2010, Lechene & Preston 2011), which instead

assumes that husband and wife play a Nash equilibrium. In this case, bargaining power

is an implicit product of the decision-making environment. We use an application of this

framework presented in Bertrand et al. (2020) to demonstrate how our approach can be used

to evaluate the bargaining power of household members. We focus on the second period of

the model, after a man and a woman have decided to form a household. At this point of

the game, husband and wife simultaneously decide how to allocate one unit of time between

remunerated work and the production of a public good within the household. For simplicity,

we assume that there are no spillovers from private consumption. The utility of household

member g ∈ {m, f} is then given by

ug(tg, t−g) = (1− tg)wg + β log(tm + tf ) ,

where tg ∈ [0, 1] is the share of time spent on producing the public good, wg is the gender-

specific wage, and β determines the weight of public good consumption relative to private

consumption. We follow Bertrand et al. (2020) and assume a gender wage gap, wf < wm,

and β < wm. Under these assumptions the man works full-time while the woman stays home

if wf < β and works part-time otherwise.

In order to calculate players’ bargaining powers, we also need to determine the equilib-

rium if the husband maximises the utility of the wife and vice versa. Without spillovers from

earnings, maximising the utility of the partner implies dedicating all available time to pro-

ducing public goods. If the wife shares the utility function of the husband, the latter always

works full time. In the reverse situation, the wife also stays home if her wage is sufficiently

low and works part-time or full-time for higher wages. Given that the husband’s behaviour

differs across these two scenarios for all parameter constellations under consideration, the

two agreement payoffs of each player are not equal and the game satisfies the Assumption of

Conflict of Interest. For β sufficiently large, on the other hand, both partners would always

prefer to stay home and there is no disagreement.

Figure 1 plots the bargaining powers of husband and wife as a function of the female

wage wf for the cases β = 0.2 and β = 0.6, assuming wm = 1. For wf < β, the wife devotes

all her time to the production of public goods, which is also the behaviour that maximises

the utility of the husband. Accordingly, the husband is assigned a bargaining power of one

and the wife a bargaining power of zero. Once her wage becomes sufficiently high, the wife

finds it attractive to work part time. Doing so increases her utility and lowers that of her
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Figure 1: Bargaining Power of Husband and Wife
Notes: The figure plots the bargaining power of husband (dashed lines) and wife (solid lines) against

the wife’s wage wf , assuming the husband’s wage wm is equal to 1. Black lines correspond to a

value of β of 0.2, while grey lines correspond to β = 0.6.

husband, leading to a more equal distribution of power. However, the power of the wife is

substantially lower than that of the husband even if her wage is almost equal to his. The

reason is that even a slightly lower opportunity cost of domestic labour on part of the wife

allows the husband to free-ride on her effort. For wf = wm, the equilibrium remains unique

under agreement on one player’s utility function. However, multiple equilibria exist under

the endowed utility functions and bargaining power depends on the probability assigned to

each equilibrium (see Section 4.2). The figure assigns probability one to the equilibrium

where the husband works full-time, which may be due to a social convention. Assigning the

same probability to all equilibria, in contrast, would lead to equal bargaining power and a

discontinuity at wf = wm.

As Figure 1 shows, a higher value of the public good β polarises the distribution of

bargaining power, since the wife reduces her labour supply while the husband continues to

free-ride. A possible interpretation is that modern appliances that generate a more quickly

declining marginal productivity of housework lead to greater equality within the household.
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5.3 Legislative Bargaining

In this section, we apply our theory to two classic models of legislative bargaining: the

agenda setter model of Romer & Rosenthal (1978) and the gatekeeper model of Denzau &

Mackay (1983). We choose these examples since they feature non-transferable utility and

the outcome of the game is therefore not fully informative about bargaining power. In both

models, a committee brings a bill to the floor of a legislative body, which then deliberates

and eventually votes on the proposal. A bill is a point x in the interval [0, 1] and if accepted,

the bill replaces the status quo q ∈ [0, 1]. The utility of each player from the final outcome o

is given by −|o− in|, where in is the ideal outcome of player n. In the agenda setter model,

the committee puts forward a bill under a closed rule, that is, the bill cannot be amended

and the legislature simply votes subject to simple majority whether to accept the proposal.

In the gatekeeper model, an open rule is in place, meaning that any legislator can propose

amendments. The finally accepted proposal is then always equal to the ideal point of the

median legislator since such a proposal defeats any other. However, the committee has the

ability to refuse to put forward a bill, keeping the status quo in place. We introduce a third

model as a benchmark, where the committee has to present a proposal under an open rule,

which renders the committee powerless. Compared to this benchmark model, the former two

models each differ in one aspect of the rules of procedure: the agenda setter model replaces

the open rule with a closed rule, while the gatekeeper model gives the committee the ability

to withhold the bill. The committee is represented by a single player and we assume here

that the committee is not itself a member of the legislature. Any influence of the committee

accordingly derives from its choice regarding the initial proposal. The set of players thus

consists of one committee and N − 1 legislators.

We follow Section 4.1 and calculate power in an ex ante sense. To do so, we assume that

ideal points and the status quo are drawn uniformly at random from an evenly spaced grid

between 0 and 1 with 100 elements. For each draw, we calculate the bargaining power of

the committee and of the legislators. We then repeat this procedure until the average across

draws converges.10 The results are presented in Table 1. Note that the legislators are ex

ante symmetric and thus have the same bargaining power.

In the benchmark model, the committee is a null player and accordingly assigned a

bargaining power of zero. In contrast, the committee has a positive influence in both the

agenda-setter and the gatekeeper model. Not surprisingly, the closed rule of the agenda-

10We could also freely draw from the interval [0, 1]. However, in this case large values of ρn can occur
due to numeric issues when a denominator in Equation (1) becomes very small. Such outliers would slow
convergence of the average. Cases where the value of ρn is not defined due to failure of the Assumption of
Conflict of Interest occur if and only if the ideal points of all players coincide. Given the low probability of
such draws, the corresponding default values for ρn do not affect the final results (see Section 4.1).
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Benchmark Model Agenda-Setter Model Gatekeeper Model

Com. Leg. Com. Leg. Com. Leg.

N = 4 0 .47 .64 .11 .24 .24

N = 6 0 .28 .62 .07 .23 .15

N = 10 0 .15 .61 .04 .22 .08

Table 1: Bargaining Power in Three Models of Legislative Bargaining

Notes: N is the number of players: one committee and N − 1 legislators. Columns titled Com.

show the bargaining power of the proposing committee, whereas columns titled Leg. contain the

bargaining power of each legislator.

setter model increases the power of the committee relative to that of a legislator more than

the mere ability to withhold legislation in the gatekeeper model. The number of legislators

decreases the influence of each individual legislator, since each legislator becomes less likely

to occupy the median position, but has a minor effect on the power of the committee. Since

only the position of the median legislator is of relevance for the decision of the committee,

one may ask why the influence of the latter depends on the number of legislators at all.

The reason is that an increase in the number of legislators makes the median legislator more

moderate in expectation.11 A more moderate median legislator, in turn, is located closer

to the status quo on average. Since the legislature never accepts a proposal that is further

away from the median legislator than the status quo, the ability of the committee to affect

the outcome is therefore decreasing in the number of legislators.12

6 Conclusion

Bargaining power is a key element of economic, political and social relations. Many central

questions in these fields are analysed through the lenses of non-cooperative games, for which

measures of bargaining power, however, have been proposed only for specific settings. This

paper introduces a novel method for measuring power in any non-cooperative game of bar-

gaining. The power of a player is calculated as the extent to which shifts in this player’s

preferences change the outcome of the game relative to the change that would occur if the

11To be precise, while the expected position of the median legislator is always equal to one-half, the
expected distance of the median legislator from one-half is decreasing in the number of legislators.

12This observation is true both when considering the raw numbers in Table 1 and the ratio between the
bargaining power of the committee and the sum of bargaining powers of the legislators.
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player in question was a dictator. Since our measure is calculated based on a mapping from

players’ utility functions to utilities, it can equally be applied to calculate how much power

a player has under a specific mechanism or social choice function. We show that no other

measure satisfies a number of axioms. For the special case of SD-games, we compare our

measure to the more conventional approach of interpreting the expected surplus share of a

player as their bargaining power. The two approaches coincide when the equilibria of the

game are Pareto efficient, but generally yield different results when they are not. Intuitively,

inefficiencies imply that players collectively do not have full control over the distribution of

the surplus and our measure calculates bargaining power relative to the share of the surplus

that players can freely allocate. The measure can also be averaged over a possible distribu-

tion that players’ preferences are drawn from, which makes it possible to evaluate bargaining

power in an ex ante sense, before players’ preferences are known. We show that in the con-

text of a weighted voting game, this ex ante measure reproduces the Shapley-Shubik or the

Penrose-Bhanzaf power index for suitable choices of the distribution of preferences.

Given that non-cooperative games are explicit about the process of bargaining, our mea-

sure is particularly valuable when assessing features of this process and their role in deter-

mining the influence of a player. Such insights are crucial, for example, when designing

institutions that aim to achieve a specific distribution of power among agents. How do

changes to judicial proceedings affect bargaining power in out-of-court settlements? Does

the most-favoured-nation principle give large countries an outsized influence in WTO nego-

tiation rounds? Our measure can shed light on these and many related questions.
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Appendix

A Proof of Theorem 1

This appendix contains the proof of Theorem 1. The proof is presented in the context of a

fixed class of indirect utility functions V̄n ⊂ Vn that correspond to games sharing a common

outcome space, set of players, and agreement payoffs.

We start by presenting three lemmas that successively introduce sharper restrictions on

the function ρn(vn).

Lemma 1. A function ρn : V̄n → R satisfies Axiom A3 if and only if

ρn(vn) = β +
∑

u′∈ UN

α(u′) vn(u
′) ,

where β and all α(u′) are real numbers.

Proof. Note that the domain of a player’s indirect utility function vn is the set UN , which

has a finite number of elements. ρn is therefore a function of a finite vector of utilities, which

are real numbers.

Let Γ =
∑G

g=1 λgΓg with corresponding indirect utility functions vn, v1,n, ..., vG,n ∈ V̄n.

Given that the class V̄n was defined to contain indirect utilities sharing the same agreement

payoffs, Axiom A3 requires

G∑
g=1

λg ρn(vg,n) = ρn(vn) = ρn

(
G∑

g=1

λgvg,n

)
,

where the second equality follows since the indirect utilities of a compound game are a

convex combination of the indirect utilities of the constituent games. ρn is therefore an

affine function on V̄n. Given that it was established above that ρn is a function of a finite

vector of real numbers, affinity of ρn is satisfied if and only if ρn takes the form given in the

statement of the lemma. □

Lemma 2. A function ρn : V̄n → R satisfies Axioms A1 and A3 if and only if

ρn(vn) =
∑

(u′,u′′)
∈ UN+1

α(u′, u′′) [vn(u
′)− vn(u

′′,u′
−n)] ,

where all α(u′, u′′) are real numbers.
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Proof. Given the functional form of ρn established in Lemma 1, it needs to be shown what

additional restrictions Axiom A1 imposes. It will be shown that it must be possible to

formulate ρn as a function of differences in payoffs of the form vn(u
′)− vn(u

′′,u′
−n). To see

this, suppose that after rearranging the terms of ρn to form pairs of utilities of the preceding

kind, there remain K payoffs vn(ũ
1),...,vn(ũ

K) with non-zero coefficients for which no pair

can be formed. For any pair ũk and ũj of the underlying vectors of utility functions it must

be the case that the two vectors differ in the utility function of some player other than n,

since it would otherwise be possible to form an additional pair of indirect utilities of the

above form. Let vn correspond to a game where n is a null player and thus ρn(vn) = 0. Since

all differences in payoffs of the form vn(u
′)− vn(u

′′,u′
−n) are equal to zero if player n is null,

we have

ρn(vn) = β +
K∑
k=1

α(ũk) vn(ũ
k) = 0 . (4)

If there exist multiple games in V̄n such that n is null and the sum
∑K

k=1 α(ũ
k) vn(ũ

k) differs

across some of these games, then the preceding equality cannot hold for all such games and

Axiom A1 would be violated. Suppose therefore that n being null implies a fixed value of

this sum across all elements of V̄n. It will be shown that this assumption can only be satisfied

if it holds for any individual vector ũk that the utility functions of all players other then n

contained in ũk are equal. To the contrary, suppose that there exists a vector ũk such that

for two players m and j it holds that ũk
m ̸= ũk

j . At least one of these functions must be

different from un. Without loss of generality, suppose ũk
m ̸= un. Then we can construct two

games, Γm and Γj, such that n is null in both games and it holds that µ∗
m(ũ

k) = µ∗
m(1ũk

m
)

and µ∗
j(ũ

k) = µ∗
j(1un) while µ∗

m(ũ
t) = µ∗

j(ũ
t) for any 1 ≤ t ≤ K such that t ̸= k. To see

that this construction is possible, recall that any two of the K vectors of utility functions

under consideration must differ in the utility function of some player other than n and n

being null therefore does not restrict the values of the corresponding payoffs. Assumption 3

implies vn(ũ
k) ̸= vn(ũ

j). But since all other relevant payoffs of player n are identical across

the two games it follows that Equation (4) cannot be satisfied for both of them, which is the

desired contradiction. For any vector ũk there thus exists a utility function uk such that the

utility functions of all players other than n contained in ũk are equal to uk. If n is a null

player, it follows that vn(ũk) = vn(1uk) and in order to satisfy Equation (4) it must hold

that β = −
∑K

k=1 α(ũk) vn(1uk). However, this contradicts that it is impossible to pair any

of the payoffs vn(ũ
k) with another of the form vn(u

′, ũk
−n). Given that all such pairs are zero

if player n is null, it further follows that ρn cannot contain any additional constant. □
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Lemma 3. A function ρn : V̄n → R satisfies Axioms A1, A2, and A3 if and only if

ρn(vn) =

∑
(u′,u′′)∈ U2 α(u′, u′′) [vn(u

′,u−n)− vn(u
′′,u−n)]∑

(u′,u′′)∈ U2 α(u′, u′′) [vn(1u′)− vn(1u′′)]
,

where all α(u′, u′′) are real numbers such that the denominator in the preceding expression is

not equal to zero.

Proof. As a first step, it will be shown that an additional restriction implied by Axiom A2

is that ρn can only depend on indirect utilities of the form vn(u
′,u−n) for some u′ ∈ U , that

is, indirect utilities under vectors of utility functions that differ from the vector of endowed

utility functions only in the utility function of player n. Given the functional form established

by Lemma 2, suppose that ρn depends on a pair of indirect utilities vn(u
′)−vn(u

′′,u′
−n) with

a non-zero coefficient, where the utility function of some player other than n included in the

vector u′ differs from their endowed utility function. At least one of these payoffs is not an

agreement payoff and, without loss of generality, let this be the payoff vn(u
′). Suppose vn

corresponds to a game where player n is a local dictator and ρn(vn) = 1. Since n being a

local dictator does not restrict the payoff vn(u
′), we can construct a second indirect utility v′n

where n continues to be a local dictator by changing this payoff while holding vn otherwise

constant. Given the already established functional form of ρn, the perturbation in vn(u
′)

increases or decreases the value of ρn(v
′
n) relative to ρn(vn), violating Axiom A2.

We have thus established that

ρn(vn) =
∑

(u′,u′′)∈ U2

α(u′, u′′) [vn(u
′,u−n)− vn(u

′′,u−n)] . (5)

Let C ̸= 0 be some real number. We can rewrite

ρn(vn) = C
∑

(u′,u′′)∈ U2

α(u′, u′′)

C
[vn(u

′,u−n)− vn(u
′′,u−n)] .

Since the exact values of the coefficients are as of yet undetermined, we can redefine them

to include the division by C and simply write

ρn(vn) = C
∑

(u′,u′′)∈ U2

α(u′, u′′) [vn(u
′,u−n)− vn(u

′′,u−n)] . (6)
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Under Axiom A2, n being a local dictator implies

C
∑

(u′,u′′)∈ U2

α(u′, u′′) [vn(1u′)− vn(1u′′)] = 1 .

Solving for C and substituting back into Equation (6) yields the desired result. Any such

function satisfies Axiom A2 as long as the coefficients are chosen such that the value of C is

not equal to zero. □

It needs to be shown that the function given in the statement of Theorem 1 is the only

function among those given by Lemma 3 that satisfies Axiom A4.

If |U| = 2, Lemma 3 pins down a unique function corresponding to the one given in the

statement of Theorem 1. It remains to consider the case |U| > 2.

The remainder of the proof relies on the functional form established by Equation (5).

Let the indirect utilities vn, v
′
n and v′′n correspond to the definitions given in the statement

of Axiom A4. The only payoffs that differ between these functions are those corresponding

to the vectors of utility functions (u′,u−n) and (u′′,u−n). These payoffs are not agreement

payoffs since the vector of endowed utility functions u contains more than two distinct

utility functions by the assumption that |U| > 2. The indirect utility functions vn, v
′
n and v′′n

therefore belong to the same class V̄n and the coefficients used to calculate the corresponding

values of ρn are identical.

By construction, it holds that v′n(u
−,u−n)−v′n(u

=,u−n) = 0 for any u−, u= ∈ U \u′ while

v′n(u
′′′,u−n)− v′n(u

′,u−n) = c and v′n(u
′,u−n)− v′n(u

′′′,u−n) = −c for any u′′′ ∈ U \u′. Based

on Equation (5), it follows that

ρn(v
′
n) = c

∑
u′′′∈ U\u′

[α(u′′′, u′)− α(u′, u′′′)] .

Repeating an analogous derivation for the indirect utility v′′n, we have

ρn(v
′
n)

ρn(v′′n)
=

α̃(u′)

α̃(u′′)
,

where

α̃(u′) :=
∑

u′′′∈ U\u′

[α(u′′′, u′)− α(u′, u′′′)]

for any u′ ∈ U . Axiom A4 thus implies

α̃(u′)

α̃(u′′)
=

v′′n(1un)− v′′n(1u′′)

v′n(1un)− v′n(1u′)
,
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or, equivalently,

α̃(u′) =
vn(1un)− vn(1u′′)

vn(1un)− vn(1u′)
α̃(u′′) ,

since all involved games share the same agreement payoffs. Given that u′ and u′′ are arbitrary

elements of the set U \ un, the preceding equality must hold for any such pair, implying

α̃(u′) =
vn(1un)− vn(1u′′)

vn(1un)− vn(1u′)
α̃(u′′) =

vn(1un)− vn(1u′′′)

vn(1un)− vn(1u′)
α̃(u′′′)

for any u′′′ ∈ U \ {un, u
′, u′′}. It follows that

[vn(1un)− vn(1u′′)]α̃(u′′) = [vn(1un)− vn(1u′′′)]α̃(u′′′) =: δ

must hold for any u′′, u′′′ ∈ U \ un and accordingly

α̃(u′) =
δ

vn(1un)− vn(1u′)
(7)

for any u′ ∈ U \ un. Equation (5) can be rearranged to yield

ρn(vn) = −
∑
u′∈ U

 ∑
u′′′∈ U\u′

α(u′′′, u′)− α(u′, u′′′)

 vn(u
′,u−n)

= −
∑
u′∈ U

α̃(u′) vn(u
′,u−n) .

Using Equation (7) to substitute for every α̃(u′) such that u′ ∈ U \ un produces

ρn(vn) = − α̃(un) vn(u)−
∑

u′∈ U\un

δ

vn(1un)− vn(1u′)
vn(u

′,u−n) . (8)

If vn corresponds to a game such that n is null, then all the indirect utilities included in

Equation (8) take the same value. Denoting this value by v̄, Axiom A1 then requires

ρn(vn) = v̄

− α̃(un) −
∑

u′∈ U\un

δ

vn(1un)− vn(1u′)

 = 0 .

Since vn may be chosen such that v̄ ̸= 0, it follows that the term in parenthesis needs to

be equal to zero. After solving the latter equality for −α̃(un) and substituting back into
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Equation (8), rearranging yields

ρn(vn) = δ
∑

u′∈ U\un

vn(u)− vn(u
′,u−n)

vn(1un)− vn(1u′)
.

If vn instead corresponds to a game such that n is a local dictator, all numerators in the

preceding equation become equal to the corresponding denominators and ρn(vn) = δ ·|U \un|.
Since Axiom A2 requires ρn(vn) = 1 in this case, it follows that δ = 1/|U \ un|. Note that

under Assumption 3 it holds that U \ un = U ̸=n. This completes the proof.

B Additional Proofs

Proof of Proposition 1. Pareto efficiency implies that if all players agree that a unique out-

come would be optimal, then the equilibrium of the game must produce this outcome with

certainty. In an SD game, under the vector of utility functions 1um all players agree that

player m should receive the whole surplus. Pareto efficiency of the outcomes µ∗(1un) and

µ∗(1um) for m ̸= n thus implies vn(1un) = 1 and vn(1um) = 0. Furthermore, Pareto efficiency

implies vn(um,u−n) = 0 since under the vector of utility functions (um,u−n) all players other

than n prefer more for themselves while player n prefers more for player m. Using all of the

above to substitute in Equation 1, it follows that

ρn(vn) =
1

|U ̸=n|
∑

u′∈ U̸=n

vn(u)− 0

1− 0
= vn(u) . □

Proof of Proposition 2. We start by calculating the value of ρn for a given vector of endowed

utility functions u /∈ {1u0 ,1u1}. It is clear that the agreement outcome under the vector

of preferences 1u0 (1u1) is equal to 0 (1) with certainty. If player n is pivotal, the outcome

coincides with that preferred by player n, which implies vn(u) = 1 and vn(u
′,u−n) = 0 for

u′ ∈ {u0, u1} \ un. It follows that ρn = 1 if player n is pivotal. If player n is not pivotal,

switching the preference of player n has no consequence for the outcome and ρn = 0. It

follows that ρn(v
S
n ) = V (S ∪{n})−V (S) if n /∈ S and ρn(v

S
n ) = V (S)−V (S \ {n}) if n ∈ S.

Define FPB(u) = 1/2N and FSS(u) = [|S|! · (N − |S|)!]/(N + 1)! . We can now establish
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that

ρ̄n(FPB) =
∑
S⊆N

1

2N
ρn(v

S
n )

=
∑
S⊆N
n/∈S

1

2N
ρn(v

S
n ) +

∑
S⊆N
n∈S

1

2N
ρn(v

S
n )

= 2
∑
S⊆N
n/∈S

1

2N
ρn(v

S
n )

=
∑
S⊆N
n/∈S

1

2N−1
[V (S ∪ {n})− V (S)] ,

where the third equality follows from the fact that for every S ⊆ N such that n /∈ S there

exists exactly one S ′ ⊆ N such that n ∈ S ′ and S = S ′\{n}. Since pivotality of player n only

depends on the other players’ preferences, it thus holds that ρn(v
S
n ) = ρn(v

S′
n ). Furthermore,

ρ̄n(FSS) =
∑
S∈N

|S|! · (N − |S|)!
(N + 1)!

ρn(v
S
n )

=
∑
S⊆N
n∈S

[
|S|! · (N − |S|)!

(N + 1)!
ρn(v

S
n )

+
(|S| − 1)! · (N − |S|+ 1)!

(N + 1)!
ρn(v

S\n
n )

]

=
∑
S⊆N
n∈S

[
|S|! · (N − |S|)!

(N + 1)!

+
(|S| − 1)! · (N − |S|+ 1)!

(N + 1)!

]
ρn(v

S
n )

=
∑
S⊆N
n∈S

(|S| − 1)! · (N − |S|)!
N !

[V (S)− V (S \ {n})] ,

where the third equality holds since ρn(v
S
n ) = ρn(v

S\n
n ), which follows as the value of ρn only

depends on whether player n is pivotal, which in turn only depends on the preferences of

other players. □
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